Conceptual Architecture of Mozilla Firefox 6

Presented by Fully Optimized eXperience

Group Members:

James Brereton - 06069736, 8jb66@queensu.ca
Gordon Krull - 06003108, 8gek@queensu.ca
Rob Staalduinen - 06009513, 8rjsl@queensu.ca
Katie Tanner - 06060472, k.tanner@queensu.ca

Prepared for CISC 322,
Queen’s University at Kingston, Ontario, Canada

October 24th, 2011

Table of Contents

N 0 1) - (o TSP 3
5o Ua o070 LT 510) o PO TSP 3
Research Overview and Derivation Processeenensensesessesseens 4
Conceptual Architecture of FIrefoXcnssessnssssssesssssssseens 4
XUL and XULRUNDNETccovueneeereressessessessessssssessessessessssssssssssssssssssssssssssssssssesnes 6
GECKO woereeeeeeeteieeees et s 7
Data PersSiStENCE ... 11
XPCOM ottt 12
Display Backend (GTK+ Adapter and Libraries) ... 13
Sequence DIagrams ... 13
LESSONS LEATNIEM ...ttt sasens 15
CONCIUSION werttceetseeeeeeesressessesse s ses bbb bbb 15
REFEIEIICES ..oveeceeieeceeeseresses st s bbbt 16

Abstract

This report intends to demonstrate our findings for the Conceptual
Architecture of Mozilla Firefox 6.0. This task was completed with the intentions of
being improved upon and adapted upon successfully determining the concrete
architecture for this system. Throughout our research, we have discovered that
Firefox takes on a layered architecture with semi-strict layering, as well as object
oriented functionality. However, we have also discovered that specific sub-
components, such as Necko, take on unique architectures of their own, such as a
pipe-and-filter.

Throughout this report, we will examine the architecture of Firefox 6.0 as a
whole, as well as provide an individual analysis of each of the major sub-systems,
their specific architectures, and how these systems interact. We will also detail our
derivation process, provide some examples of how this architecture would function,
and explain the lessons we gathered from this process.

Introduction
Purpose of Report

In this report we discuss our findings on the conceptual architecture of
Firefox 6.0. This includes our research process and our methods for deriving our
final conceptual architecture and the dependencies between subsystems and
components, as well as some examples data flow during common operations.

What is Firefox?

Firefox is a free, open source web browser developed and managed by the
Mozilla Corporation. It currently accounts for approximately 25% of worldwide
usage share of web browsers as of September 2011. It includes many advanced web
browsing features such as tabbed browsing, spell checking, incremental find, live
bookmarking, a download manager, private browsing, and support for adding
extensions created by third party developers. It runs on various operating systems,
including the big three (Windows, Mac OS X, and Linux), and is capable of running
on multiple hardware platforms.

A Brief History of Firefox

Mozilla Firefox was created by Dave Hyatt and Blake Ross as an experimental
branch of the Mozilla project. Firefox 1.0 was released on November 9, 2004 with
further versions being released subsequently, generally on a 1-year release cycle.
Version 6.0 was released on August 16th, 2011. Most of the major architecture
components have remained the same throughout the development since Firefox 2.0,

with changes and upgrades being implemented to subsystems and components as
development moves forward.

Research Overview/Derivation Process

We began our research on the conceptual architecture of Firefox by studying
the reference architecture for web browsers provided in the paper “A Case Study in
Architectural Analysis: The Evolution of the Modern Web Browser” by Alan
Grosskurth and Michael W. Godfrey.

In addition to the reference architecture for web browsers, we studied the
conceptual architecture of Firefox that the authors provided. Although this depicted
a much earlier version of Firefox it was still instrumental in forming a basis for our
understanding of the subsystems of Firefox and how they interact with one another.
Using the information that we were able to extract from the paper as well as the
architecture diagrams provided, we had a good starting point for our research into
Firefox 6.0.

From this point, we set out to do general research on Firefox itself. This gave
us a lot of valuable information on Firefox’s development and functionality, the most
interesting of which being that Firefox has recently transitioned to a rapid-release
schedule. Once we had a general idea of what subsystems and dependencies to
expect in the conceptual architecture, we then begun a more in-depth analysis of the
different components of the Firefox architecture using the information we were able
to gather from both the paper and our general research as a baseline.

It was at this stage, upon close analysis and research of the different
components, that we were able to begin mapping out the architecture. Our main
sources of documentation and descriptions of the various subsystems of Firefox
were the Mozilla Developers Network (MDN) as well as the Mozilla Wiki. With this
newfound knowledge, it began to become much clearer what dependencies existed
within Firefox, and thus we were able to complete our conceptual architecture of
Firefox.

Conceptual Architecture of Firefox

As we began the process of forming our conceptual architecture, we referred
to the reference architecture for web browsers as presented in the research paper
“A Case Study in Architectural Analysis: The Evolution of the Modern Web Browser”
by Alan Grosskurth and Michael W. Godfrey. We began to conceptualize our idea for
the architecture of Firefox 6 through the reading of all available documentation on
the different components and subsystems, provided by Mozilla as well as other
developers. Our findings on the architecture of Firefox consisted of a Virtual
Machine Style Layered Architecture, with XPCOM serving as the crucial component

that allows the system to function as a whole. Our conceptual architecture for
Firefox 6 is depicted on the following page.

AUL
(User Interface)

!

Gecko (Data Persistance)

(Browser Engine)
(Rendering Engine) (Networking)
(JavaScript Interpreter) Session Store API
(XML Parser)

DOM Storage

W

mozstorage
T B r
I Display Backend /
Legend I I
I GTE=+ 1
ST |
Subsystem
I I
I I
: I
—, Depends on I GTK+/X11 !
I Libraries :
r— - I
I | Grouping e o - —— !
—

XPCOM

Figure 1: Conceptual Architecture of Mozilla Firefox 6.0

While reading the documentation, we discovered that although in previous
versions of Firefox key subsystems such as Necko and SpiderMonkey were
considered separate from Gecko, they are now considered components of the Gecko
Subsystem. While Gecko’s primary purpose remains to render and display
WebPages to the user through the User Interface, it now is considered to contain
these subsystems and therefore by using the reference architecture we define Gecko
as not only the Browser Engine and Rendering engine, but the Networking,
JavaScript Interpreter, and the XML Parser components as well.

The Layered Architecture of Firefox clearly indicates the dependencies and
how FireFox functions. The topmost layer consists of the user interface, which
depends upon the rest of the system to render the browser. This layer serves as the
main venue through which the user interacts with the Firefox system. The UI calls
upon the second layer, which service the Ul layer with rendering and data access.
This layer contains both the Gecko and Necko subsystems, which are also
implemented as a Virtual Machine layered architectural style with pipe and filter
elements. Finally, the lowest layer is the Display Backend. The Display Backend
provides proper GUI formatting information to Gecko so that pages can be properly
rendered on any platform according to that platform’s specifications.

The nature of a layered architecture benefits the system by allowing it great
portability since the lowest layer provides platform-specific rendering for the
system. The system is also highly modifiable since there are many different
components and each performs a specific task.

Having presented our derived conceptual architecture for Firefox, we will
now describe each component of the Firefox system as well as how the various
components interact.

XUL and XULRunner

As previously mentioned, the topmost layer of Firefox is its user interface,
which corresponds to the top layer of the reference architecture. XUL, XML UI
Language, provides the basis for Firefox’s user interface. Rather than being
hardwired into the application itself, the Ul is loaded from a separate Ul description
written in XUL. XUL is essentially XML (extensible markup language), but allows for
HTML elements, including JavaScript, to be incorporated and has a specific
definition for a few element types. Mozilla uses this to build cross-platform
applications such as web browsers and mail clients. Proper Ul descriptions must
take into account various platforms’ differing layouts and elements such as dialog
boxes. While a single cross-platform Ul description could function on different
platforms, build engineers and Ul designers must maintain platform-specific
versions of some XUL documents so that the browser can be rendered in the optimal
format for each platform.

XULRunner is the runtime environment used for the deployment of XUL
applications such as Firefox, or an application written in any language supported by
the Mozilla web platform (such as HTML, XHTML, SVG, or XUL). Among other things,
it includes the API and User Interface for installing, upgrading, and uninstalling
Firefox as well as lixbul, a solution for embedding Mozilla technologies in other
projects.

The user interface layer relies on Gecko for its rendering and parsing
capabilities as well as for Necko, the networking component. The Ul layer is also
dependent on XPCOM.

Gecko

As mentioned above, the Gecko subsystem now serves as more than just
Firefox’s Browser Engine and the Rendering Engine. Its components now include
the JavaScript Interpreter, SpiderMonkey, and the Networking Subsystem (Necko).
Gecko truly serves as the heart of the Firefox browser. It is highly standard
compliant using many different standards (HTML, DOM, RDF, XML to name a few)
and is used in many different Mozilla products due to its capabilities and strengths
when it comes to fast and effective rendering. Below is our conceptual architecture
for the Gecko subsystem, for which we have derived an object-oriented architecture,
displaying the dependencies between each of its components. This should provide
an indication as to how the various components of Gecko interact and function, but
we will describe each component in detail following the conceptual architecture
diagram.

User Interface (XUL)

I\
Gecko _ _ b __
] o 1
| Browser Engine Document Parser | 1
| Rendering Engine (HTML = XML Content Model 1
1 Parser) Frame !
1 Image Library yi - Constructor .—/7 :
1
: Style System [CS5 |&— :
Parser
| <) |
1 2 1
1 I
- = o e - - T - - - = o el e - — —
1 Networking
1 1
1 MNecko 1 N
| |
1 1 Platform
1 v 1 SpiderMonkey specic
| NSS/PSM 1 (JavaScript rendering and
e e - = 1 Interpreter) widgets
V.-/ I pisplay Backend :
[Data Storage) ! N 1
Legend I GTK= Adapter I
: Subsystem DOM Storage : N 1
. 1
—_— Depends on Session Store AP] ! GTE+/X11 1
- : Libraries 1
L __1 Grouping mozStorage - _E _ i_ 21_ _/_7 —
XPCOM |

Figure 2: Conceptual Architecture of the Gecko subsystem

We have divided up each of the components into the groups to clearly
distinguish the different components and their functions within the gecko

subsystem. We have partitioned components into one group for the Browser and
Rendering Engine aspect of Gecko, and another for Networking. Not included in
these groupings but present in Gecko are the JavaScript interpreter and a
component for platform-specific rendering.

Browser Engine/Rendering Engine Components

Document Parser (HTML & XML Parser)

In Firefox 6, the Document Parser component serves as the parser for both
HTML and XML. The Document Parser accesses the HTML code via Necko after
receiving the URL data from the User Interface through the Content Model. After
parsing the HTML code, it sends the code to the Content Model for further
manipulation before passing it to the Frame Constructor for rendering of the web
page. The Document Parser also contains the Expat Library for XML, which allows it
for the parsing of any XML data received from Necko before the code is sent to the
Content Model.

Content Model

The Content Model receives the aspects of each fetched web page from the
Document Parser for manipulation before sending the manipulated code to the
Frame Constructor to actually construct the webpage. It begins by interacting with
the user interface and receiving URL data before sending this information to Necko
to retrieve the HTML code as well other components required for the requested
webpage. It then manipulates the data for rendering through the use of a DOM
(Document Object Model) tree. It also interacts with SpiderMonkey for any
JavaScript interpretation that is required, the Image Library for any image data that
the webpage requires, and the components of the Data Persistence subsystem for
any cached data that can be used in the formation of the web page. The Content
Model also relies on Data Persistence when retrieving user data such as preferences
and bookmarks. Once the content model has received all the necessary data, it
passes the manipulated data from the DOM tree to the Frame Constructor.

Stvle System (CSS Parser)

The main purpose of the Style System within Gecko is to parse any CSS data
received from Necko. The data is then sent to the Frame Constructor to properly
render the data through the User Interface. If more information is required for the
CSS data, it is received from the Content Model.

Image Library

The Image Library retrieves a webpage’s image data from Necko and loads it
before sending it to the Content Model.

Frame Constructor

The Frame Constructor is the subsystem that receives all of the data
necessary to construct a web page before it is sent back to the user interface layer
for the user to view. This includes parsed HTML, XML, and JavaScript, from the
Content Model and image data from the Image Library. It begins by receiving the
DOM Tree data from the Content Model and any CSS data from the Style System. The
Frame Constructor then proceeds to build the Web Page, using the Platform-Specific
Rendering and Widgets component to construct the webpage in the manner best
suited for the platform for which it is being requested. The Frame Constructor sends
its constructed page to the subsystem for Platform-Specific Rendering before the
page is finally displayed to the user.

SpiderMonkey

SpiderMonkey, is FireFox’s JavaScript engine, written in C/C++. Essentially, it
is a fast interpreter that operates on a full range of JavaScript values. Its components
are an interpreter, a compiler, 2 JIT or just-in-time compilers, a decompiler, garbage
collection, and a standard library. SpiderMonkey receives JavaScript code to be
interpreted before sending the interpreted code back to the Content Model for
further rendering. SpiderMonkey also contains a few public APIs so that other
applications can utilize SpiderMonkey for JavaScript support.

Platform-Specific Rendering and Widgets

Gecko includes this subsystem, which provides platform-specific GUI data to
the Frame Constructor. It interacts with the Display Backend, specifically the GTK+
adapter. It also serves as the final step in rendering a page before it is displayed to
the user.

Networking

Necko

Necko is the main networking library of Mozilla Firefox, responsible for the
transport of data from a location on the internet to the other components of Firefox,
which will render the data into a form that can be displayed by the User Interface.
Necko is able to transport data through the commonly used locator known as
URL(Uniform Resource Locator). Necko has protocols to handle many different
types of data, including http and https, ftp, and files to name a few.

Architecture: Necko itself has a rather unique architecture within the Gecko
subsystem. It uses a pipe-and-filter style architecture for its control flow, which

allows for the logical handling of the different protocols available. The dependencies
of the Necko Architecture can be seen below.

Incoming nsISocketTransport &

Events nslIFileTransport are the two main

nslUR! [nterface | transport interfaces of Necko, allowing
for the physical transport of data. These
transports pass the data to an 10 Stream

nsliOService URIGenerator

Outbound
Commands

nslChannel provides an interface for
the movement of data to and from a
URL. There is a direct 1-to-1 ratio
between nsIChannels and URLs being
accessed. It depends on the
nsIProtocolHandler to create a channel
with the proper protocol. The
nslChannel provides the actual data
flow to the rest of Firefox

nslProtocolHandler Protocol nslProtocolHandler
Handlers i

nsiChannel nsiChannel

1/0 Streams

nslSocketTransport nsiFileTransport

nsIProtocolHandler allows for the
creation of channels with the proper
protocols. For example the http
protocol handler creates http
nsIChannels

Figure 3: Conceptual Architecture of Necko
nsllOService acts as a protocol lookup, as a URL has no inherent knowledge of what
protocol it represents. It provides the proper protocol to the protocol handler in
order to interact with the specified URL.

Necko relies on the XPCOM libraries for interacting with other system components,
and the NSS libraries for its network security.

Network Security Services (NSS)

Network Security Services consists of a set of libraries, APIs, utilities and
documentation designed to support cross-platform development of security-
enabled client and server applications. It supports a wide variety of security
standards, such as SSL v2 and v3, TLS, PKCS #5, PKCS #7, PKCS #11, PKCS #12,
S/MIME, X.509 v3 certificates, and others. The Necko subsystem depends on NSS in
order to handle any secure data that it encounters while loading a webpage.

10

Personal Security Manager(PSM)

The Personal Security Manager is built on top of NSS and consists of a set of
libraries that perform cryptographic operations on behalf of a client application.
These can include setting up an SSL connection, object signing and signature
verification, certificate management (issuing and revoking) and other common
functions.

Data Persistence

The purpose of the data persistence subsystem is to store user, tab and
window data across Firefox sessions. This can be achieved in different ways using
the different components contained within the data persistence subsystem. In
addition to this XUL provides a mechanism for helping to store persistent data for
remembering the state of windows, toolbars, and more. An attribute called “persist”
is used to determine which attributes to save. The information is then collected and
stored in a file in the same directory as other user preferences. XUL allows for
saving the state of any element.

In our conceptual architecture you can see that the data persistence is in the
2nd Jayer, the same as the Gecko subsystem. The data persistence has no outgoing
dependencies to other subsystems in the architecture and only has one incoming
dependency from Gecko. More specifically we have found that the dependency
comes from the Content Model component within Gecko, which depends on the data
persistence when retrieving bookmarks, user preferences, and cached website data.

Session Store API

The session store API makes it possible for extensions to easily save and
restore data across Firefox sessions using a simple API that allows access to the
session store feature. One instance where supporting this feature is a major benefit
for an extension is that from Firefox 2.0 and onwards have allowed the user to undo
the closing of tabs. In order to restore the tab correctly an extension must use
methods provided by the session store API in order to save any data that it will need
to be restored, and to retrieve the previous data when the tab is restored. Two
important interfaces for the session store API are nsISessionStore and
nslSessionStartup. The session store API is implemented using nsISessionStore,
which provides a means for extensions and other code to store data in associations
with browser sessions, tabs and windows and nsISessionStartup actually handles
the session restore process.

DOM Storage

DOM Storage is designed to provide a larger, more secure, and easier-to-use
alternative to storing information in cookies and was first introduced in Firefox 2. It

11

is a means through which string key/value pairs can be securely stored and later
retrieved for use. The DOM Storage is very useful because there are no good
browser-only methods that exist for persisting reasonable amounts of data for any
period of time. For example browser cookies can only hold a limited amount of data
and provide no organization for persisted data, and other storage methods require
external plugins. One of the major benefits of using the DOM Storage is that it
supports more advanced abilities. For example, it a user to “work offline” for
extended periods of time

Storage(mozStorage)

Storage (previously called mozStorage) is a SQLite database API that is
available to trusted callers. This means Firefox extensions and Firefox components
only. It handles the process for getting the storage service and then connects to
databases and executes statements on the open database connection. It is able to
execute a statement either synchronously or asynchronously. Beginning with
version 3.0, Firefox uses Storage for its history, form history and bookmark data.

XPCOM

XPCOM, the Cross Platform Component Object Model, allows developers to
create cross-platform, modular software. The primary purpose of XPCOM is to allow
developers to modularize large software projects into smaller components and
thereby allow these components to be developed and built independently of one
another. The components, which are contained in reusable binary libraries, are then
re-assembled at runtime of the application.

XPCOM also provides the tools and libraries that enable the loading and
manipulation of these modularized components. Additionally, it provides much of
the same functionality as a development platform, including component
management, file abstraction, object message passing, and memory management.
Although XPCOM provides its own core components and classes, the majority of
XPCOM components are provided by other parts of Firefox such as Gecko and Necko,
hence its outgoing dependencies.

XPCOM is used by every component of Firefox as it is the basis for
manipulating the various components and objects within the system. However, its
most important use is within Gecko, because XPCOM provides the means of
accessing the Gecko library functionality as well as the means of embedding or
extending Gecko. XPCOM’s modularizing of Firefox greatly enhances the system’s
performance, modifiability, maintainability, as well as ease of development.

12

Display Backend - GTK+ Adapter and the GTK+/X11

Libraries

The lowest layer of Firefox’s Architecture contains both the GTK+ Adapter
and the GTK+/X11 Libraries. Both GTK+ and X11 are multiplatform GUI widgets and
toolkits used to generate GUIs. The GTK+ Adapter and the GTK+/X11 Libraries form
what is considered in the Firefox architecture the Display Backend. This layer
provides Gecko’s Rendering Engine with platform-specific graphical data to ensure
proper rendering on each individual platform and is responsible for the high level of
portability of the Firefox browser.

Sequence Diagrams

Below are two sequence diagrams demonstrating data flow between systems
in Firefox for two very common functions of a web browser. We have included one
sequence diagram which depicts data flow when displaying a cached webpage, and
another for displaying a non-cached webpage.

Displaying a cached webpage

Ul Rendering Necko SpiderMonkey Display Data
User T T T T T T
inputs | | | | | |
URL 1 1 1 1 1 1
— P 1 1 1 1 1
1 1 1 1 1 1
:—’: Check for cached page !(found) ! ! ’:
1 1 1 1 1 1
1 <-—F— I L
1 1 1 1 1 1
1 1 1 1 1 1
1 1 Necko checks for newer versions of page 1 1 1
1 k 1 1 1
1 4 — 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 i 1 1 1
X ' Send page to Javascrlpt!nterpreter - X X
1 - ‘+————— — 1 1
1 1 1 1 1 1
1 1 1 1 1 1
: : Send page to Display B%lckend to be rendere#l : :
1 i 1 1 g 1
1 - F—— +—— — 1
¢ — 1
1 1
1
1
1
1
1
1
1
1
1

Figure 4: Sequence Diagram for Displaying a Cached Webpage

13

This sequence diagram illustrates the process of displaying a cached
webpage. The process begins with the user inputting a URL to the User Interface
(UI) component of Firefox. The Ul then sends this to the Rendering Engine within
Gecko. The Rendering Engine checks with the Data Persistence component to see if
there is a cached version of the requested page stored and, upon finding that the
page exists within the cache, sends the page back to the Rendering Engine. The
networking subsystem, Necko, then checks the web to see if there is a newer version
of the page available and reacts accordingly (i.e., fetches the newer page version if
required) and then sends the results of its findings back to the Rendering Engine for
further processing. The Rendering Engine now begins the process of actually
rendering the page by sending it to SpiderMonkey to interpret any Javascript that
needs to be displayed. SpiderMonkey returns the interpreted page to the Rendering
Engine, which in turn sends the page to the Display Backend to finalize the
rendering. Finally, the page is sent back to the Rendering Engine, then to the Ul to be
displayed for the user.

Sequence Diagram - Displaying a non-cached webpage

Ul Rendering Necko SpiderMonkey Display Data

User
inputs
URL

I P Check for cached page :(not found)

|

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
Send page to Javascript Interpreter >:

T

—
1

1

i ———————— ~
1
1
I ————————— o ———
1 1
1 1
: Send page to Display B%lckend to be rendere#l >:
i T T i
¢ ————————— F——————— t—————————— =

S S

Figure 5: Sequence Diagram for Displaying a Non-cached Webpage

This sequence diagram depicts data flow when displaying a non-cached
webpage. The process begins with the user inputting a URL through the User
Interface (UI) component of Firefox. The Ul then relays this to the Rendering Engine
within Gecko. The Rendering Engine checks with the Data Persistence component
for a cached version of the requested page and finds that one does not exist. The

14

networking subsystem, Necko, then fetches the requested page from the web and
sends the page back to the Rendering Engine once it is found. The Rendering Engine
now begins the process of actually rendering the page by sending it to
SpiderMonkey to interpret any Javascript that needs to be displayed. SpiderMonkey
returns the interpreted page to the Rendering Engine, which in turn sends the page
to the Display Backend to finalize the rendering. Finally, the page is sent back to the
Rendering Engine, then to the Ul to be displayed for the user.

Lessons Learned

During the course of this project, we learned many things about the process
of deriving a conceptual architecture. First and foremost, we learned that the
documentation base for an open source project such as Firefox can often be limited,
as it can easily be deemed as a low priority. To make matters worse, the new rapid
release cycle Firefox is adopting means that the overall operation of Firefox itself is
changing rapidly, making the documentation often inconsistent.

We also learned the importance of understanding how each component links
together. We initially split up each component between our group members, in
order to examine each in depth. Though this gave us a better opportunity to master
the specific components, it was when we came together and discovered how they
worked as a whole that we gained a much deeper understanding of the individual
components and their interfaces between each other.

Conclusion

The overall architecture of Firefox 6.0 was a layered architecture with semi-
strict layering, with an object oriented style of control for the Gecko subsystem. One
of the interesting changes of the current build of Firefox is that many components,
such as the networking interface(Necko and NSS), the Javascript
Interpreter(Spidermonkey) and the XML Parser(Expat) have been integrated in to
Gecko, making in truly the heart and soul of the Firefox system.

Firefox remains an outstanding example of open-source software, with a
great focus on cross platform usage, as evidenced by the XPCOM library, which
allows for ease of use on all platforms. As well, the fact that each of its components
(XUL, Gecko, Necko, SpiderMonkey, Expat, Data Persistence, XPCOM and GTK+)
remaining as distinct objects allows for an easily upgradable and modifiable system.

The next objective of this assignment will be an in depth examination of the

source code, allowing for us to refine our conceptual architecture and derive the
concrete architecture of Firefox 6.0.

15

References

https://developer.mozilla.org/en/Mozilla_Application_Framework_in_Detail
https://developer.mozilla.org/en/Necko
https://developer.mozilla.org/en/Necko_Architecture
http://www.w3counter.com/globalstats.php
https://developer.mozilla.org/en/Creating XPCOM_Components/An_Overvi
ew_of XPCOM

https://developer.mozilla.org/En/SpiderMonkey/Internal
https://developer.mozilla.org/en/DOM /Storage
https://developer.mozilla.org/en/Session_store_API
https://developer.mozilla.org/en/XPCOM_Interface_Reference/nsISessionSt
ore
https://developer.mozilla.org/en/XPCOM_Interface_Reference/nsISessionSt
artup

https://developer.mozilla.org/en/XUL_Tutorial/Persistent_Data
https://developer.mozilla.org/en/NSS
http://www.mozilla.org/projects/security/pki/nss/
https://developer.mozilla.org/en/NSS_FAQ
http://www.mozilla.org/projects/security/pki/psm/
https://wiki.mozilla.org/Gecko:Home_Page
https://wiki.mozilla.org/Gecko:Overview
https://developer.mozilla.org/en/Gecko_FAQ
http://research.cs.queensu.ca/home/emads/teaching/readings/emse-
browserRefArch.pdf

http://www.gtk.org/
https://developer.mozilla.org/en/Gecko_Embedding Basics
http://xkcd.com/198/

https://wiki.mozilla.org/Firefox/Roadmap

http://www.x.org/wiki/

http://en.wikipedia.org/wiki/Firefox

16

